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Abstract. The critical slowing down, and its dynamic exponent are studied in the one- 
dimensional Glauber-king model. The calculations serve as an example of the application 
of the ideas of the real space renormalisation group in time-dependent problems. 

1. Introduction and discussion 

The study of critical phenomena with the aid of the renormalisation group (RG) 
approach provides a verification of the hypothesis of universality, a way to extract 
critical exponents and amplitude ratios, as well as a method to calculate thermo- 
dynamic and correlation functions. Under the RG transformation (Wilson 1971), the 
effective Hamiltonian, X ( l ) ,  appearing in the partition function, is transformed to 
X ( l +  1) through the change of the space scale, and a rescaling of the appropriate 
degrees of freedom. In general, it is very difficult to find the transformation RI, 
X(I + 1) = RlX(1). Thus several methods of approximation were developed. One 
method is the E expansion (Wilson and Fisher 1972, Wilson and Kogut 1974), in 
which the short wavelength modes are integrated out in a d ( =  4 -€)-dimensional 
system. Another method is the real space renormalisation (Niemeijer and van 
Leeuwen 1976, Kadanoff et a1 1976, Nelson and Fisher 1975). In the real space 
renormalisation a new spin variable, F ~ ,  is defined on a new lattice which has a larger 
lattice constant. This transformation is of the form 

so that the partition function is invariant under the transformation. (kB is the Boltz- 
mann constant and T is the temperature). If Y { p ,  a} = ni S ( F ~  -ani), the trans- 
formation is called ‘decimation’, under which a fraction of the v are integrated out. 
Other forms of 9’ can describe the block transformations in which the pi does not 
coincide with one of the old mi, but describes a block of {ai}. 

The success of the RG approach in the understanding of static critical phenomena 
motivated the adoption of it in the study of critical dynamics. According to tbe 
conventional theory (Van Hove 1954) the lifetime ~ ( k )  of the k Fourier component of 
the order parameter is given by 

T ( k )  = x ( k ) / D  
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where ~ ( k )  = (sku+) is the k-dependent susceptibility of the order parameter, and 
D is the transport coefficient. D is proportional to k2 if the order parameter is 
conserved. This result was generalised by the dynamic scaling hypothesis (Ferrell et a1 
1968, Halperin and Hohenberg 1969) by the definition of the dynamic exponent z 
such that 

T ( k )  - 5”5) 
where 6 is the correlation length and F ( y )  is some universal function. In the con- 
ventional theory the non-conserved order parameter has zconv = 2 - 77 where rl is the 
correlation function exponent. The above relation between T and 6 indicates that 
under a spatial rescaling the lifetime will also rescale. Thus, the equation of motion 
will be invariant under the rescaling of the space and the characteristic time. The 
parameter space includes not only the usual static components but also the bare 
transport coefficients. The exponent z is determined so that the transport coefficient 
of the slower mode will not be changed under the RG (Ma 1967a, b). 

The first explicit solution of a time-dependent RG was given by Halperin et a1 
(1972,1974). They introduced the time-dependent Ginzburg-Landau model which is 
the continuum spin version (Myerson 1976) of the Glauber (1963) model for one-spin 
flip processes combined with the Landau-Ginzburg-Wilson Hamiltonian (Wilson and 
Kogut 1974). In the continuum spin models, the large k variables represent the 
rapidly varying modes, Hence the RG transformation can be done by expressing the 
fast modes in terms of the slow ones. This procedure will renormalise the noise term 
in the equation of motion, and will change the characteristic cut-off of the problem. 
Since the coupling between the fast and the slow modes has a fixed point of order E ,  

one can find a systematic way of obtaining the recursion relations as an expansion in 
powers of E .  

Most work on critical dynamics is based on the Ginzburg-Landau formulation and 
results in expansions around four and six dimensions (Hohenberg and Halperin 1977). 
Only one attempt has been made to study the dynamics of a model of discrete spins on 
a lattice. In this work (Ma 1976a, b) a Monte-Carlo method was used for a numerical 
study of the behaviour of blocks in the two-dimensional Ising model. The results 
revealed the existence of two time scales. When the block spin flips over, rapid 
fluctuations appear. The longer time scale describes the collective behaviour of a 
block. The appearance of the two time scales, and the absence of a formalism cause 
difficulties in the numerical analysis (Ma 1976a, b), and in the interpretation of the 
results. 

In this article we want to show how the idea of the RG transformation on a lattice 
can be generalised to time-dependent problems. As an example we choose the 
one-dimensional Glauber (1963) model which has the advantage of both being simple 
and of being the only exactly soluble model known. The reader is referred to Nelson 
and Fisher (1975) for a detailed discussion of the discrete static RG transformation in 
the one-dimensional Ising model. In 4 2 we review the Glauber model and perform 
the decimation transformation. In 0 3 the same model is solved using the block 
transformation. In the two methods, when the external field H vanishes the exact 
recursion relations obeyed by the static parameters and the time scale are found. 
When H # 0 ,  we have been able to find only the recursion relations valid to linear 
order in H. The static limit coincides with the known static recursion relations (Nelson 
and Fisher 1975). However, when H # 0 one needs to make use of the static RG 
transformation of quantities calculated when H = 0. Since it is difficult to identify the 
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fast and the slow modes, we eliminate one of two equivalent modes. This procedure, 
which is quite obvious in the decimation transformation is generalised in the block 
transformation. In both transformations it is shown that the RG creates memory 
effects which are, however, irrelevant in the RG sense. 

2. The decimation of the Glauber model 

The one-dimensional Glauber (1963) model is a chain of stochastic functions of time 
ui(t) which are restricted to the values It1 and make transitions randomly between 
these two values via an interaction with an external heat bath. The equilibrium 
properties of the system are determined by the king Hamiltonian 

Glauber assumed that the dynamics of the system is a single spin flip process. Thus, 
the time derivative of the spin probability functions, P(ul , . . g,,; t ) ,  is 

where Wi is the probability of the j th spin to flip in a unit time. Glauber suggested 
that Wi are of the form: 

(2.3) 1 w,(ui) = 3a [ 1 - zygj (Vj-l+ gj+l)] 

where y = tanh(2J/kBT) determined by the detailed balance at equilibrium (kB is the 
Boltzmann constant, T is the temperature, and a which fixes the time scale will be 
taken to be unity in the following). This choice of W is not unique, but has the 
advantage of simplicity rather than profound physical background. After few 
manipulations one can obtain a master equation for the spin average, 

As this equation stands, it has an ideal form for a real space renormalisation. The 
qi*l(t) can be solved in terms of qi and qi*2 and so they are eliminated. This procedure 
is equivalent to a scaling of the space by a factor of two. The reader will notice that in 
contrast to a more conventional treatment we do not eliminate a rapid mode in favour 
of a slower mode. Here one of two equivalent modes is eliminated. As a result of the 
scaling, (2.4) becomes 

where 
m 

4i(0)= I 4( t )  exp(iwt) dt. 
--CO 
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In terms of the new parameters, 

w'=u(2-iw)/(1-y2/2) (2.7) 

equation (2.5) has the same form as before the space scaling was performed. Thus 
(2.6) and (2.7) are the recursion relations for the interaction and the time scale. 
Equation (2.6) describes the static RG which is independent of the time renor- 
malisation (as it should be). K = exp(2J/kBT), the asymptotic temperature depen- 
dence of the correlation length obeys the known exact recursion relation (Nelson and 
Fisher 1975): 

K-' = 4 ~ - ~ / ( 1 +  K - ' ) ~ ,  

and gives the ferromagnetic fixed point [-' = 0 at T = 0. To extract information on 
the dynamics we define a critical index z via the rescaling of time t' = rb-' where b = 2 
is the space scale factor. From equation (2.7) linearised with respect to w at the 
ferromagnetic fixed point we get z = 2. The significance of z is the same as in the 
continuum spin models (Hohenberg and Halperin 1977). The average magnetisation, 
M ( t )  = (Xi q i ( t ) ) /X i  1, is assumed to be time-dependent with characteristic time T (  T )  
such that M(t,  T) = (-""m(r/T(T)), where p and v are the usual critical indices of the 
magnetisation and correlation length, respectively. Since in the present calculations 
the spins do not rescale, M[[( l ) ,  t ( l ) ]  = M([,  t ) ,  and /3 = 0 (Nelson and Fisher 1975). 
However at the lth stage, ( ( l ) =  b-'[, and r( l)= tb-". We now choose 1 so that 
(((l))-' = c (c << 1 so that the linear approximation of the recursion relation is valid). 
We obtain M(( ,  t )  = m ( t / ( ' )  where m(x) = M(c-' ,  c- 'x ) .  Thus T - 5' and one 
identifies z as the dynamic exponent. We have not introduced z here in the frame- 
work of the time-dependent correlation function, as is usually done. This is due to the 
fact that we have discussed only the first moment of the master equation. A study of 
higher correlations leads, naturally, to the same z,  since there is only one time scale as 
long as there are no more degrees of freedom except the order parameter, and we are 
asymptotically close to the critical point. The results we obtained are easily checked 
from the exact expressions (Glauber 1963): 

(M(O)M(t)) - exp[-(1 - y2)lrl]. 

The asymptotic behaviour of (1 - y2)/4 - (1 - y ) / 2  is &-' which corresponds to z = 2. 
The above value of z was obtained by the linearisation of equation (2.7). This step 

is not a priori correct and has to be justified. The dynamic process described by 
equation (2.2) is a Markoffian one (depending only on one time). Thus the static 
parameter space has to be enlarged by only one more parameter, the time scale, in 
order to describe the dynamics. After one iteration of the RG a term proportional to 
(-iw)' is created, corresponding to a memory effect. Thus, in order to have a 
consistent RG we have to start with an initial parameter space which includes all the 
coefficients of the derivatives with respect to the time. We have to substitute, d/dr in 
equation (2.7), d ld t  +f(d/dt), such that f ( 0 )  = 0 and df(x)/dxlo = 1. 

M(r)  = M ( 0 )  exp[-(1 - y ) r ]  and 

The recursion relation (2.7) becomes an exact recursion relation for f(-iw ) 

f(-iw) =f(-iw)(2 +f(-iw))/(I - ty ' ) .  (2.8) 

The value of z will be determined by the demand that the bare time scale will be a 
marginal variable. Thus it is obtained by linearising equation (2.6), leading to the 
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value z = 2. It is easy to check that under this scaling the quadratic term has an 
exponent -22 + 2 = -2. Thus the quadratic term is irrelevant in the RG sense and 
does not change the previous results. These transient memory effects correspond to 
the short time scale found in the numerical calculations of Ma (1976a, b). 

It is interesting to see what happens when the system is subject to an external 
magnetic field H. When H # 0, the Hamiltonian (2.1) includes a term H Xi ai and the 
master equation becomes (Glauber 1963): 

dqi (t)/dt = -qi ( t )  + B + b(qi- i ( t )  + cli+l(t))-~By(ri-l,i(t) + ri,i+i(t)) (2.9) 

where rii = Xim) u,o,P({a}, t )  and B = tanh(H/kBT). The time behaviour of the r 
depends on higher order spin correlations, creating a hierarchy of equations. Glauber 
(1963) suggested that this set of equations be linearised with respect to H/kBT, 
assuming the deviations from equilibrium to be proportional to H. Under this 
approximation, we can substitute ri-l,i(t) by its equilibrium value Q = ri-l,i(m)= 
T ~ , ~ + I ( O O ) .  Equation (2.9) becomes 

dq i /d t= -q i+ ty (q i - ,+q i+ l )+b  where b = B(1- y Q ) .  (2.10) 

The decimation of this model shows that equations (2.6)-(2.7) are still the recursions 
for y and the time scale. This result is consistent with the exact static recursions 
(Nelson and Fisher 1975) which do not include terms linear in H. It also means that z 
has the same value as the H = 0 case. The recursion relation for the constant term is 

b’ = 2b( l+  y)/(2 - y 2 ) .  (2.11) 

Equation (2.11) comes from two recursion relations; one is for 1 - rQ and the other 
for B. These can be obtained either from the known value of Q = [l - (1 - y2)1 ’2] /y  
or by direct decimation of the equation of motion of the r. The result is: 

(1 - ?a>, = 2(1 - y o ) / @  - y 2 ) .  

B’ = B(1+ y )  

(2.12) 

By substituting into equation (2.11) we obtain 

which agrees with the static recursion relation linearised with respect to B (Nelson and 
Fisher 1975). 

3. The block transformation 

The decimation procedure, which was described in the previous section has the 
disadvantage of assuming that 8 = 2-d. This assumption which is justified in d = 1, 
becomes worse when d increases hence preventing one from reaching the right fixed 
point (Wegner 1976). This difficulty does not arise in the block transformation which 
describes a set of spins in a block by new spin variable, and introduces a rescaling 
factor (Niemeijer and van Leeuwen 1976, Kadanoff et a1 1976). The reason for 
preferring a certain form of Y { p ,  a} (1.1) is discussed in detail by Nelson and Fisher 
(1975), and will not be repeated here. In particular, the transformation, 

 CL, U) = n I Y i b ,  n i exp[pi(piazi + P Z C ~ ~ + I ) ] / ~  COSh(P2a2i +Pzuzi+l) (3.1) 

associates a new spin variable, pi, with a block of two adjacent spins (+zi and cZicl. In 
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order that the transformed Hamiltonian remains in the original parameter space of 
nearest neighbour coupling, the pi  are not independent and restricted by (Nelson and 
Fisher 1975): 

~ x P ( ~ J / ~ B T )  cosh(pi +~2)/cosh(pi -p2). (3.2) 

Quantities which depend on pi can be related to those of ui by: 

piyi(pi; ~ 2 i t  az i+d=tanh(p1~2i  + ~ 2 ~ 2 i + l ) = A l ~ ~ i  +A2~2i+1 (3.3) 
&=*l 

where A; =$[tanh(pl +p2)f tanh(pl - p ~ ) ] .  Relation (3.3) has to be understood as 
subject to further tracing over {U}. Using (3.3) and (2.4) we can derive the equation of 
motion of the spin block (pi) 

d 
- - (pi)=-(pi)+~Y(A1(a2i- l+U2i+l)+A2(a2i dt +(+2(i+1))- (3.4) 

In order to eliminate the {a} from the right-hand side of (3.4) in favour of { (pi )} ,  we 
define a complimentary spin-block variable &, to span all degrees of freedom of the 
system before the renormalisation. Choosing 

Y’U, U) = n YXLi; ~ 2 i - 1 9  ~ 2 i )  
(3.5) 

i 

=n  exp[l i (pz~zi-~ + ~ 2 ~ 2 i ) 1 / 2  c o ~ h ( ~ i ( + ~ i - l + ~ 2 ~ 2 i ) ,  
I 

equation (3.4) becomes 

A similar equation of motion is obeyed by the {(&)}. Having now two equivalent 
sublattices, the rest of the calculation is similar to the decimation which was described 
in 0 2. 

The Fourier components of the block spins are related by 

( l i >  =$~((pi--i)+(c~i))I(1 -iw). (3.7) 

Substituting back into (3.6) we obtain the recursion relations (2.6)-(2.7). As in the 
static case (Nelson and Fisher 1975) the fixed point of the RG transformation does not 
determine p1 and p2 separately, but only constrains them by equation (3.2). Thus we 
have a continuum set of RG transformations which have, of course, the same 
dynamics. 

We shall conclude the paper with a remark concerning the conventional theory 
(Van Hove 1954) which predicts zconv= 2-77 = 1. The z =2 ,  we found here, can be 
obtained of course from the exact solution (Glauber 1963), but we think that the large 
disagreement between z and zconv worth mentioning. 
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